What's Missing for Robotics–First Foundation Models?

Ted Xiao

Agenda

O1 Why Robot Foundation Models?

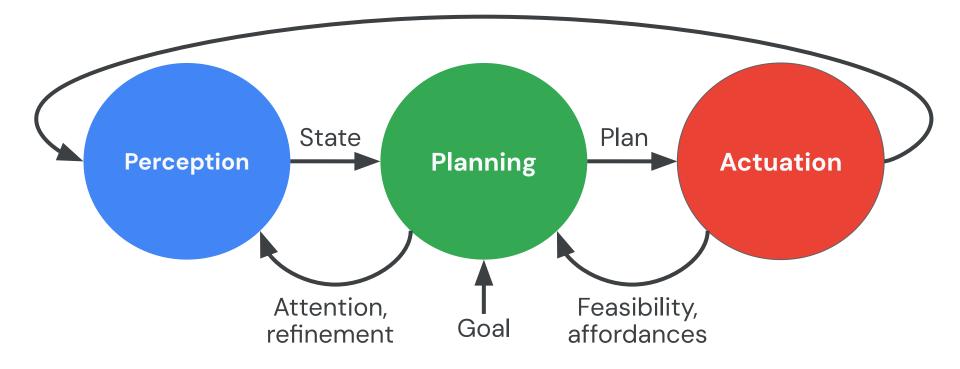
O2 Piece #1: Positive Transfer from Scaling

03 Piece #2: Steerability

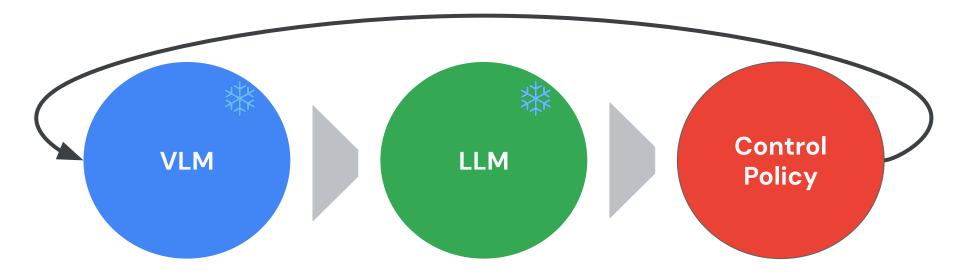
O4 Piece #3: Scalable Evaluation

05 Horizons

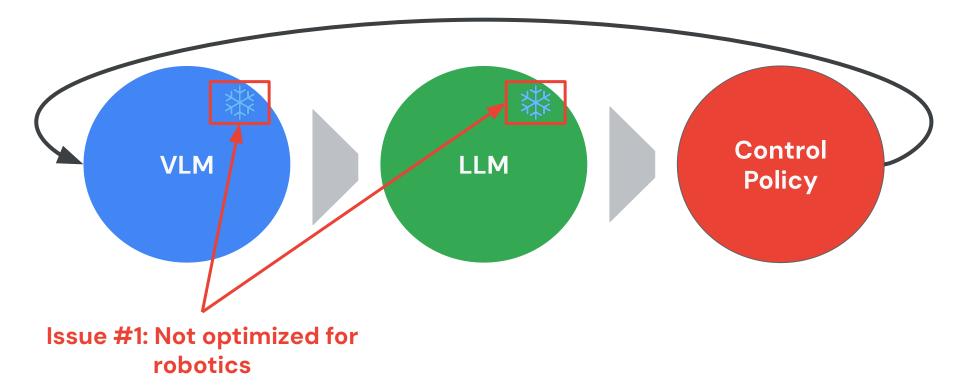
The Robotics Information Flow



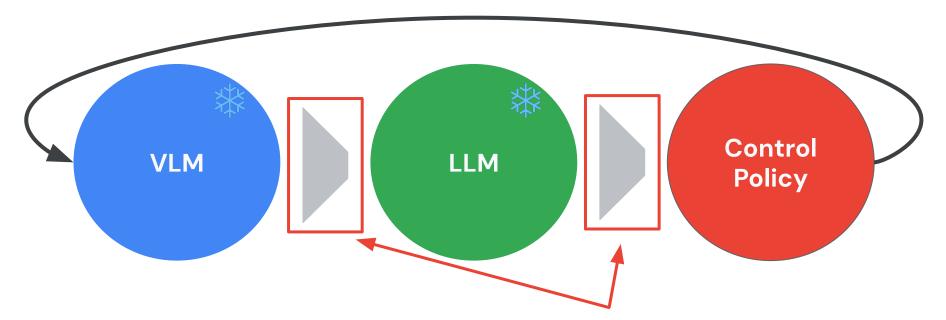
Foundation Models as Experts



Foundation Models as Experts



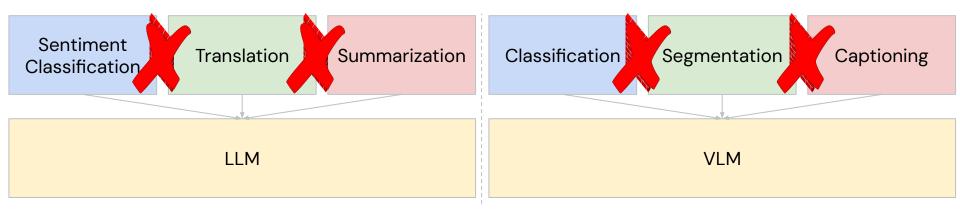
Foundation Models as Experts

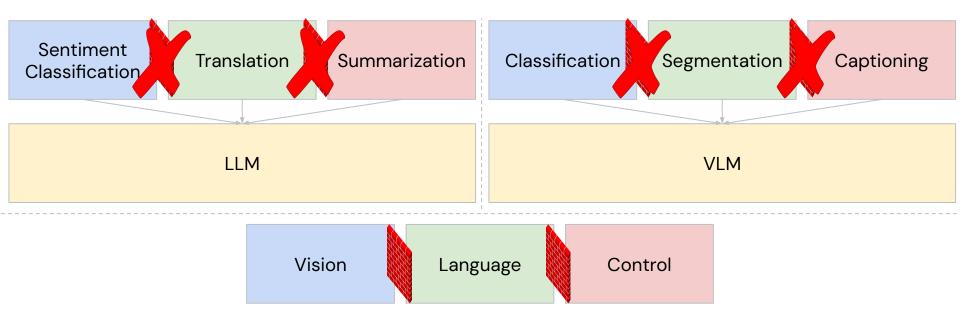


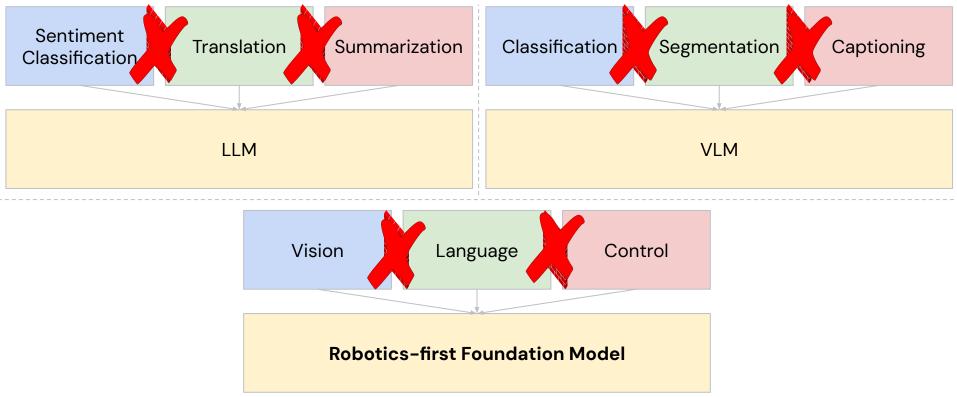
Issue #1: Not optimized for robotics

Issue #2: Narrow communication bandwidth between "intelligence modules"

Sentiment Classification	Translation	Summarization	Classification	Segmentation	Captioning



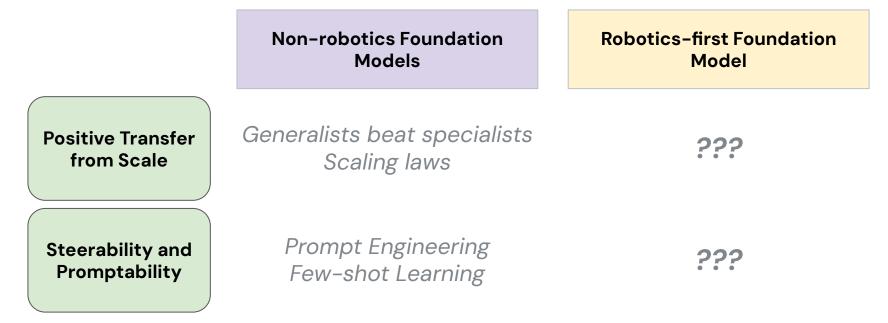




Non-robotics Foundation Models Robotics-first Foundation Model

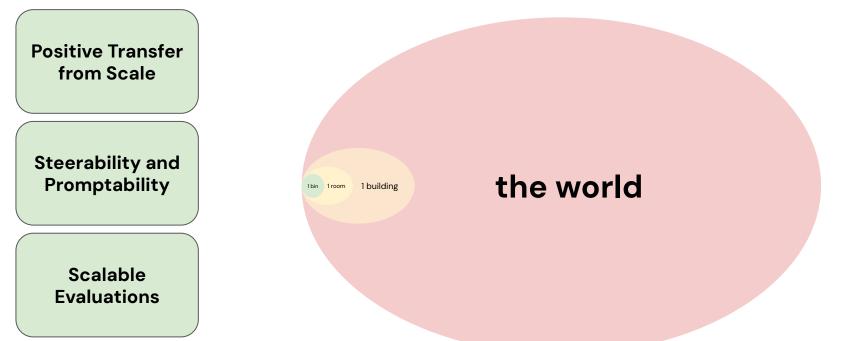
Positive Transfer from Scale Generalists beat specialists Scaling laws

???

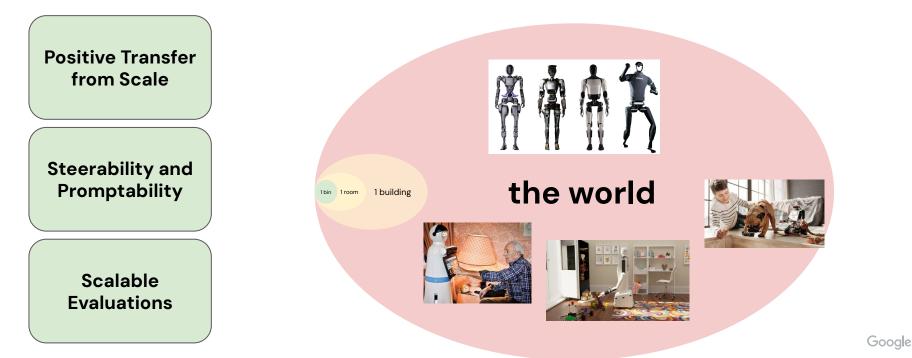


Non-robotics Foundation Robotics-first Foundation Models Model Generalists beat specialists **Positive Transfer** 222 from Scale Scaling laws Prompt Engineering **Steerability and** ??? Promptability Few-shot Learning Realistic Evals Scalable <u>???</u> **Evaluations** Predictive Benchmarks

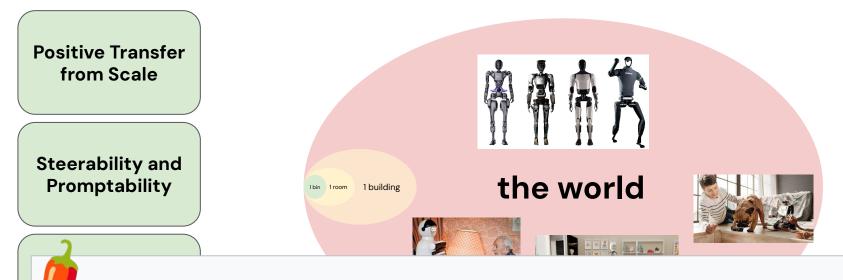
Claim: These missing properties are <u>necessary</u> for robotics to operate in the real world



Claim: These missing properties are <u>necessary</u> for robotics to operate in the real world



Claim: These missing properties are <u>necessary</u> for robotics to operate in the real world



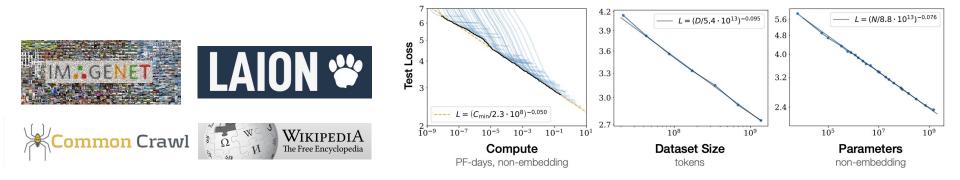
2024 level SoTA technology is not sufficient for general robotics. At least one or two paradigm shifts (algorithms and data) required

Agenda

- O1 Why Robot Foundation Models?
- **O2** Piece #1: Positive Transfer from Scaling
- O3 Piece #2: Steerability
- O4 Piece #3: Scalable Evaluation
- 05 Horizons

Lessons from Foundation Modeling: Data Scaling

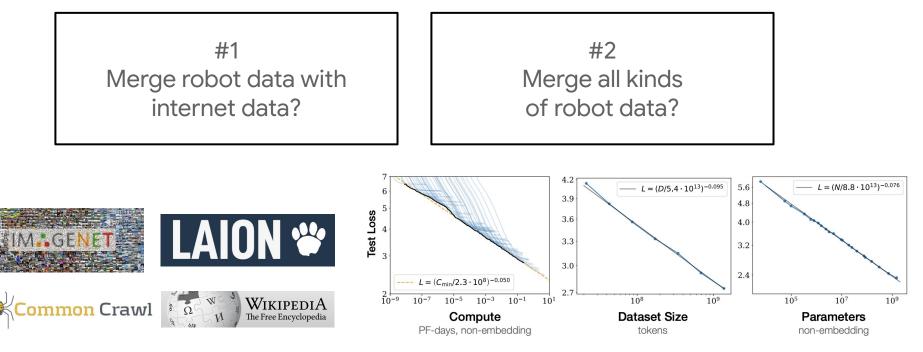
- Data scaling a key ingredient in LLMs and VLMs
- ...but the internet already exists. No equivalent for robot data yet!



Source: Kaplan et al. 2020

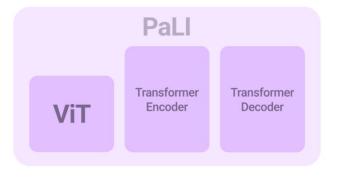
Lessons from Foundation Modeling: Data Scaling

- Data scaling a key ingredient in LLMs and VLMs
- ...but the internet already exists. No equivalent for robot data yet!



Source: Kaplan et al. 2020

Vision-Language Models



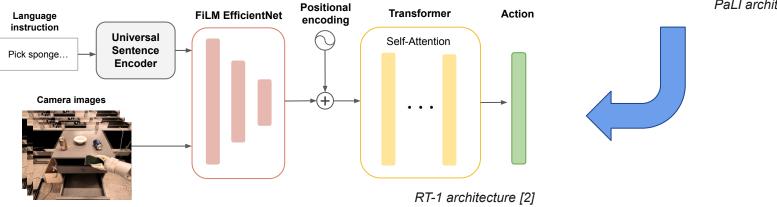
• VLMs encompass both **visual** and **semantic** understanding of the world

[1] PaLI: A Jointly-Scaled Multilingual Language-Image Model. Chen et al. 2022.



PaLI architecture [1]

VLMs as Robot Policies



- **RT-1:** image + text → **discretized actions**
- Similar to a Visual-Language Model (VLM) with different **output tokens**
- Use large pre-trained VLMs directly as the **policy**!
- How do we **deal with actions** when using pre-trained VLMs?

[1] PaLI: A Jointly-Scaled Multilingual Language-Image Model. Chen et al. 2022.[2] RT-1: Robotics Transformer for Real-World Control at Scale, Robotics at Google and Everyday Robots, 2022.

Representing Actions in VLMs

Robot actions:

- Moving the robot arm and gripper Ο
- Discretized into 256 bins Ο

Actions in VLMs

- Convert to a string of numbers Ο
- Example: "1 127 115 218 101 56 90 255" Ο
- Alternatives: \bigcirc
 - Float numbers more tokens needed
 - *Extra-IDs, least used* language tokens
 - Human language (left, right etc.) can't be directly executed on a robot

→ Vision-Language-Action (VLA) model!

Training data and underlying models

Models

- PaLI-X (5B, 55B)
- PaLM-E (12B)

Data

- Pretraining: Web-data
- Robot data
 - RT-1 data
 - \circ 13 robots
 - o 17 months
 - 130k demos

Internet-Scale VQA + Robot Action Data

Q: What is happening in the image?

A grey donkey walks down the street.

Q: Que puis-je faire avec ces objets?

Faire cuire un gâteau.

Q: What should the robot do to <task>?

Δ Translation = [0.1, -0.2, 0]Δ Rotation = $[10^{\circ}, 25^{\circ}, -7^{\circ}]$

Results: Emergent skills

put strawberry into the correct bowl

pick up the bag about to fall off the table

move apple to Denver Nuggets

pick robot

place orange in the matching bowl

move redbull can to H

move soccer ball to basketball

move banana to Germany

move cup to the wine bottle

pick animal with different color

move coke can to Taylor Swift

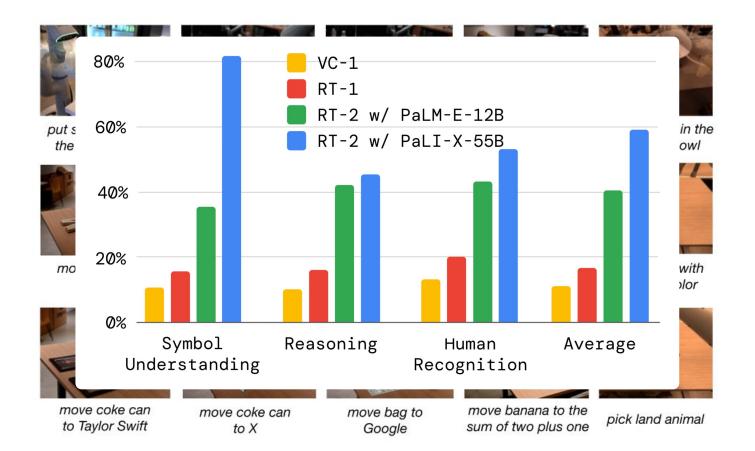
move coke can to X

move bag to Google

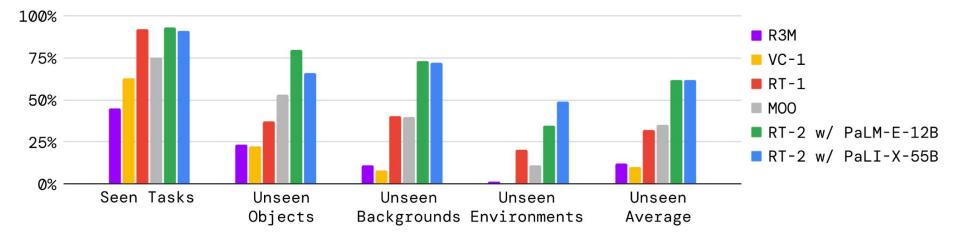
move banana to the sum of two plus one

pick land animal

Results: Emergent skills



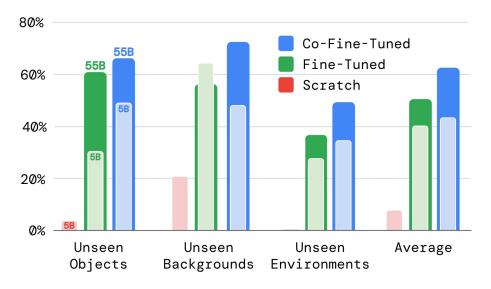
Results: Quantitative evals



Results: Quantitative evals

RT2 w/ PaLI-X-55B ablations

- Co-Fine-Tuning with VQA data
- Fine-Tuning on robot data only
- Training on robot data from scratch



Positive Transfer: Chain-of-Thought with RT-2-PaLM-E

Prompt:

Given Instruction: Bring me a drink. Prediction: Plan: pick 7up can. Action: 1 143 129 123 145 114 115 127

Prompt:

Given Instruction: Move all the objects together. Prediction:

Plan: move green can near green rice chip bag. Action: 1 128 126 127 135 123 119 127

Prompt:

Given Instruction: Pick the object that is different from all other objects

Prediction:

Plan: pick rxbar chocolate. Action: 1 128 129 125 131 125 128 127

Prompt:

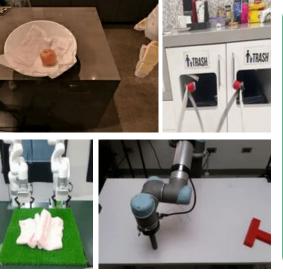
Given Instruction: Move the green objects together. Prediction:

Plan: move green can near green rice chip bag. Action: 1 130 129 121 131 127 128 127

Prompt:

Given I need to hammer a nail, what object from the scene might be useful? Prediction: Rocks. Action: 1 129 138 122 132 135 106 127

The Open X-Embodiment Dataset

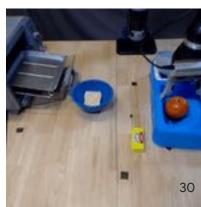


22 Robot Embodiments

1M+ Real Robot Episodes

34 Research Labs

300+ Scenes

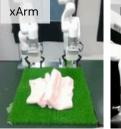


The Open X-Embodiment Dataset

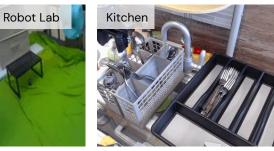
Many Embodiments

Google Robot

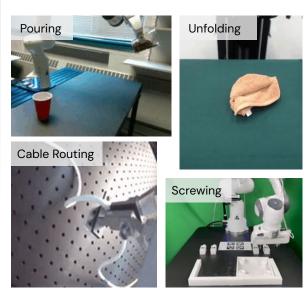




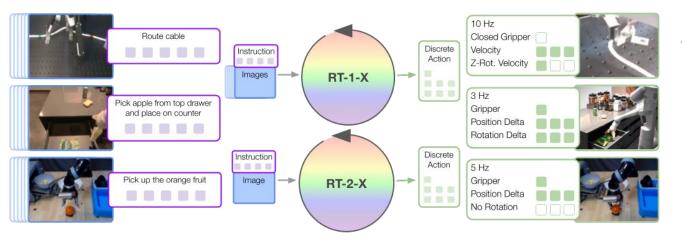
Many Scenes



Many Skills



Model Architectures



<u>Just</u> RT-1 and RT-2 trained on X-Embodiment datasets

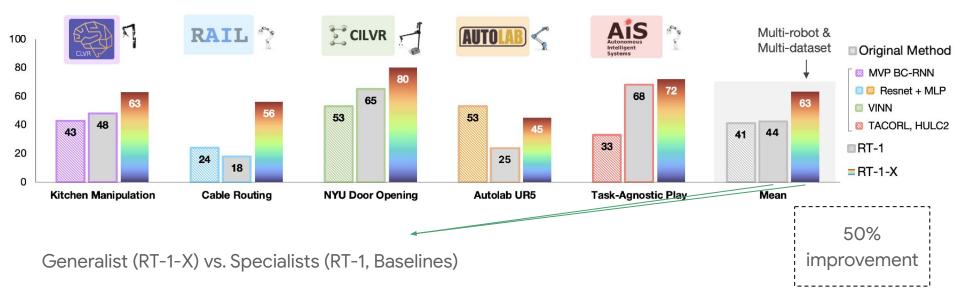
Velocity, delta position, absolute position

Different evaluations run at different frequencies

Inputs: RGB images and text instructions

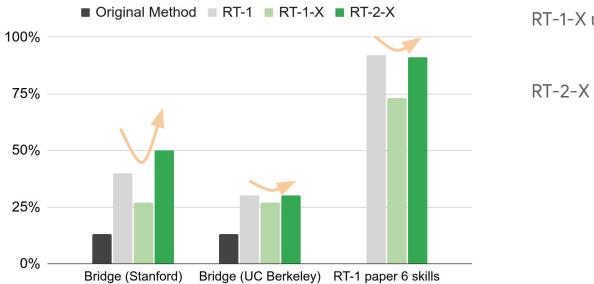
Outputs: discretized end-effector actions

Results: Signs of Positive Transfer



• Training on data from **all robots** outperforms training on data from the particular evaluation robot

Results: Small Models Underfit

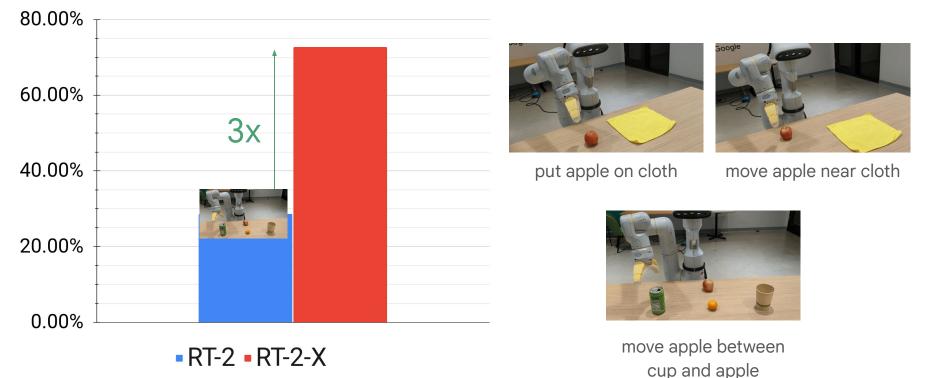


RT-1-X underfits for large datasets

RT-2-X recovers performance

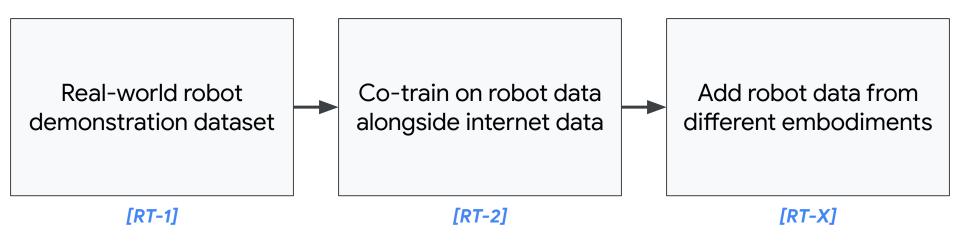
Is Web-scale Data Sufficient?

RT-2-X outperforms RT-2 by 3x in emergent skill evaluations



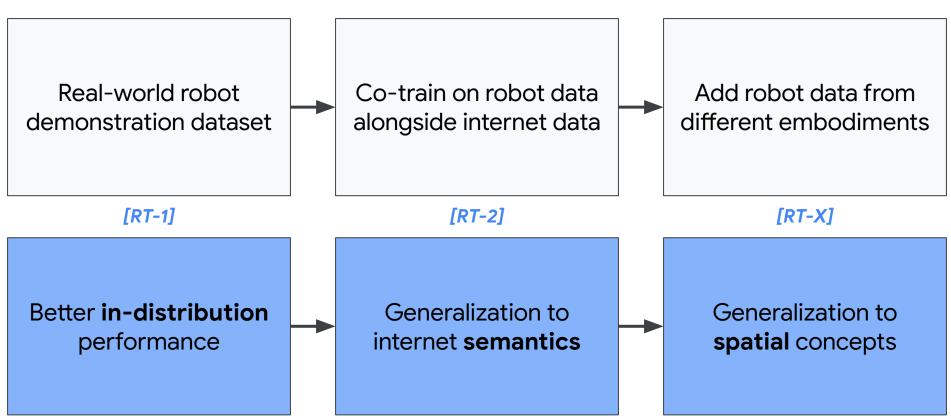
35

Data Scaling and Positive Transfer Recap



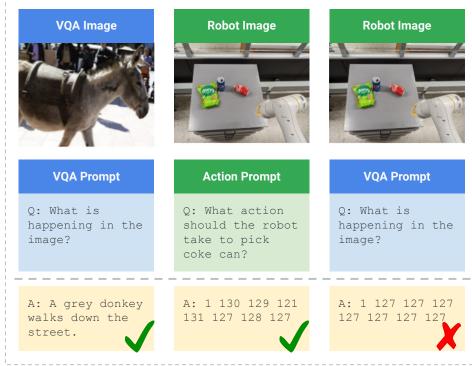
Increasing data interoperability by treating robot actions as just another data modality

Data Scaling and Positive Transfer Recap



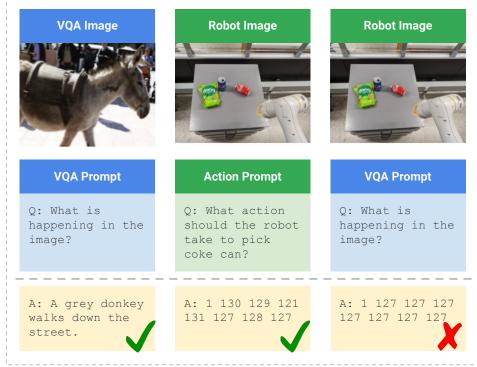
...But Many Open Challenges!

VLAs overfit to robotics data distributions



...But Many Open Challenges!

VLAs overfit to robotics data distributions



Reasoning mixes unpredictably with low-level robot action control

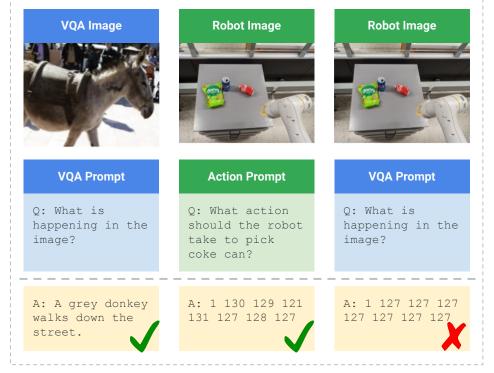
Prompt:

Given I need to hammer a nail, what object from the scene might be useful? Prediction: Rocks. Action: 1 129 138 122 132 135 106 127

If coke can added to scene, planning works but actions break!

...But Many Open Challenges!

VLAs overfit to robotics data distributions



[3] Grounding Multimodal Large Language Models in Actions, Szot et al., 2024.

Reasoning mixes unpredictably with low-level robot action control

Prompt:

Given I need to hammer a nail, what object from the scene might be useful? Prediction: Rocks. Action: 1 129 138 122 132 135 106 127

If coke can added to scene, planning works but actions break!

Action representations and tokenization decision choices are underexplored

Contin	uous ASA	Discrete ASA		
Regression	[dx, dy, dz]	MLP Classification	pick apple pick pear	
Uniform	dx dy dz	Semantic	"pick apple"	
Tokenization		Tokenization	[5839, 26163]	
Learned	$dx \\ dy \rightarrow \rightarrow$	Non-Semantic	"pick apple"	
Tokenization		Tokenization	[278,276]	

Agenda

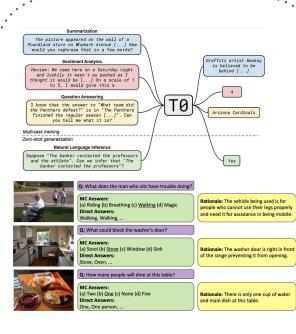
- O1 Why Robot Foundation Models?
- **O2** Piece #1: Positive Transfer from Scaling
- **03** Piece #2: Steerability
- O4 Piece #3: Scalable Evaluation
- 05 Horizons

We convey intent to robot policies via very <u>constrained</u> interfaces...

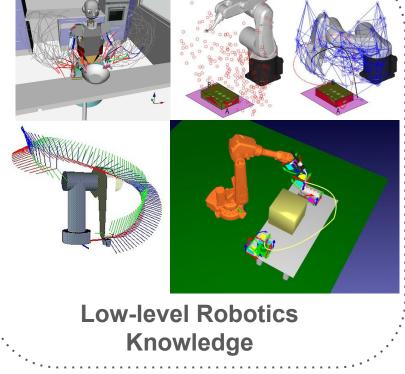
...but LLM reasoning is enabled by large context <u>bandwidths</u>.

Where is my promptable generalist robot??

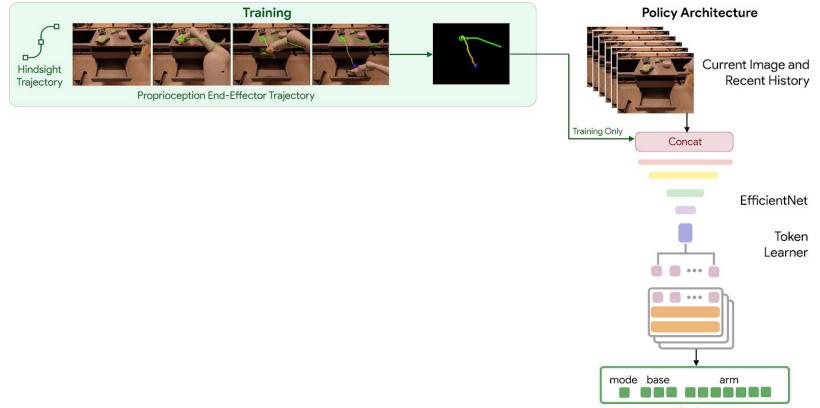
Strengths and Limitations of Language



High-level Language Knowledge

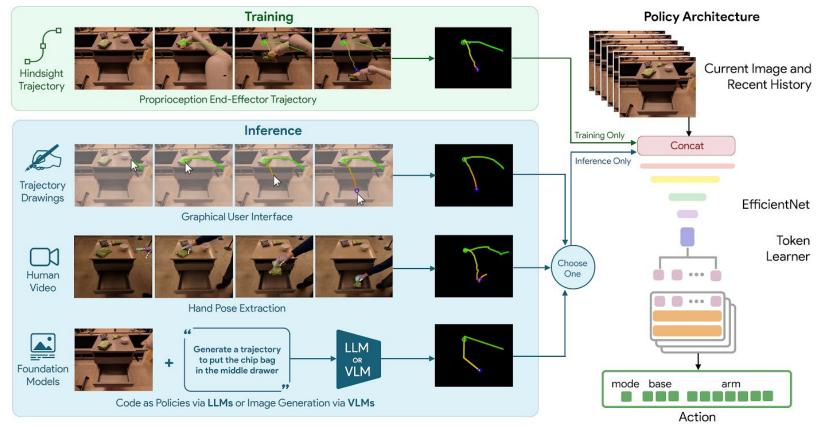


Motion-centric Representations: Hindsight Trajectories **RT-Trajectory**



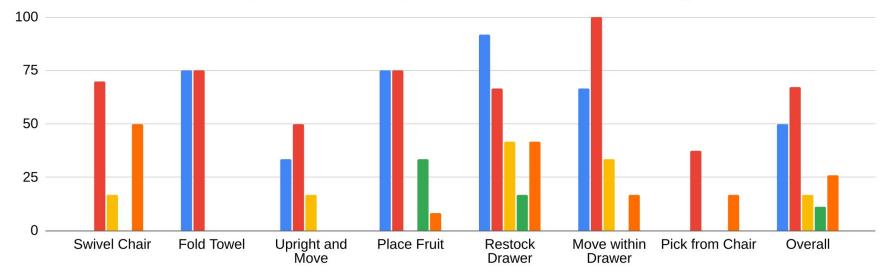
Action

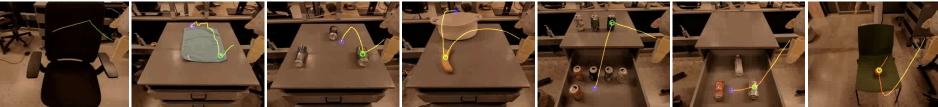
Motion-centric Representations: Hindsight Trajectories **RT-Trajectory**



Results: Quantitative Evaluations

RT-Traj (2D) = RT-Traj (2.5D) = RT-1 = RT-2 = RT-1-goal





Results: Prompt Engineering via Trajectories

Ego-centric trajectory representations enable broad generalization:

- Novel motions (new heights, new shapes, new curvatures)
- Visual distribution shifts (new furniture, new rooms, new objects, new lighting)
- Behavior modulation within skills (specify exactly *how* to accomplish the task)

Concurrent Work: Tracks, Flow, Motion

Motions and trajectories are a powerful representation which capture the unique properties of robotics: actions, dynamics, physics, change

RoboTAP

Any-point Trajectory Modeling

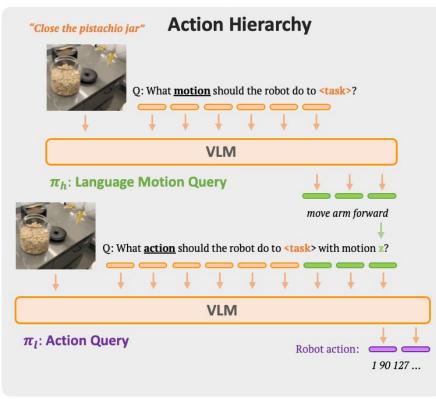
Track2Act

[4] RoboTAP: Tracking Arbitrary Points for Few-Shot Visual Imitation, Vecerik et al., 2023.

[5] Any-point Trajectory Modeling for Policy Learning, Wen et al., 2024.

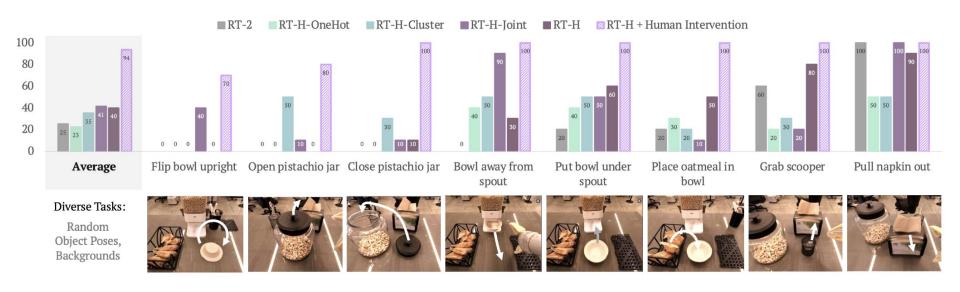
[6] Track2Act: Predicting Point Tracks from Internet Videos enables Diverse Zero-shot Robot Manipulation, Bharadhwaj et al. 2024.

Is language enough, if it's *hierarchical* and *granular*? **RT-Hierarchy**



- Idea: predict granular <u>language</u> <u>motions</u> before predicting low-level robot actions
 - "move arm forward", "rotate arm clockwise", "close gripper"
- Can be viewed as chain-of-thought / planning for language-based skills

Results: RT-H Outperforms RT-2



No other policy class (RT–1, RT–2) was able to learn from challenging new data

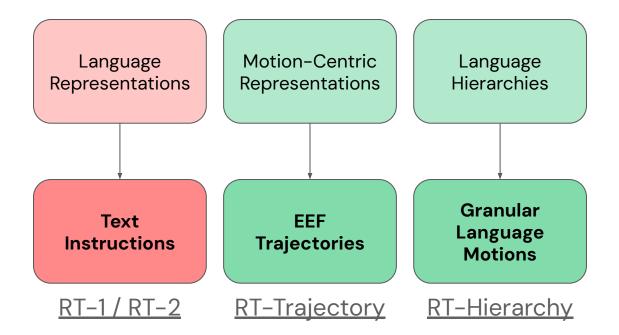
Results: Language Interventions

Task: "Close the pistachio jar"

Action Hierarchies Improve Performance and Enable Intervention

RT-H bottleneck often was language motion prediction rather than low-level action prediction: language motions easier to collect interventions for!

Steerability Recap



We have proofs of concept for promptable robots...

...but do we have enough <u>robot data</u> to support these algorithms?

We have proofs of concept for promptable robots...

...but do we have enough <u>robot data</u> to support these algorithms?

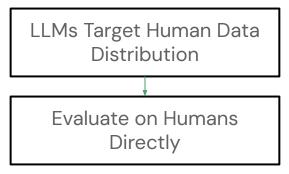
Robot data is not guaranteed to be a bottleneck because we don't yet know what kind of robot data we need

Agenda

- O1 Why Robot Foundation Models?
- **O2** Piece #1: Positive Transfer from Scaling
- O3 Piece #2: Steerability
- **O4** Piece #3: Scalable Evaluation
- 05 Horizons

Al has an Evaluation Problem

- All roads lead to generalist models, but generalist models that can "do anything" need to be evaluated on "everything"!
- How do you <u>scalably</u> evaluate a broad set of capabilities?



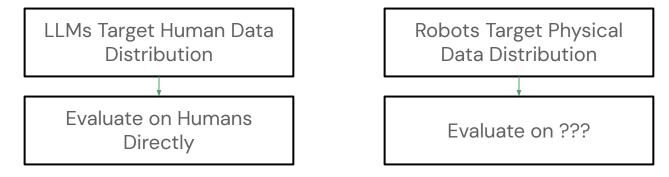
515 <u>Chirbor A</u> d more details	leens is a crowdsourced open platform t s in ear space;			allected ev	er 500,000 haman pa			Terry model and display the mod	lei ratings in Ele-scala. You can
lotal Arrodeb:	82. Total #vetes: 672,236. Link upda	end -	April 13, 2014.						
NEWI View	leaderboard for different categories (e.g		ding, long user o	resit					
ade ta recrea	te leaderboard tables and clots in this r		weis, Way can co	tibutevo	arvete 🖶 at char i vec				
				Overall Q	instinus				
				frické	h: #2 (500%) #veter	= 672,235 (200%)			
Rank -	Model		🛨 Azona E		10 350 T	• Votes +	Organization +	License A	Knowledge Cutoff 4
			1255 1254		+3/-4 +3/-3	56181 65159	Anthropic OpenAI	Proprietary Proprietary	2025/8 2023/4
			1254 1250		+2/-3 +3/-4	65159 50923	Danado IAnado	Proprietary Proprietary	2923/4 2023/12
			1254 1250 1209		+3/-3 +3/-4 +5/-5	65159 50923 12468	OperAI OperAI Google	Proprietary Proprietary Proprietary	2023/4 2025/12 Online
			1254 1250 1209 1203		+3/-3 +3/-4 +5/-5 +3/-3	65159 50923 12468 62056	OperAI OperAI Gosgle Anthropic	Proprietany Proprietany Proprietany Proprietany	2922/4 2023/12 Online 2023/8

HumanEval: Hand-Written Evaluation Set

is an evaluation harness for the HumanEval problem solving dataset described <u>uage Models Trained on Code</u>*.

AI has an Evaluation Problem

- All roads lead to generalist models, but generalist models that can "do anything" need to be evaluated on "everything"!
- How do you <u>scalably</u> evaluate a broad set of capabilities?



LMSVS <u>Charbox A</u> Ind more details	erra is a crowdsourced open platform for in eer agent.			er 508,800 haman p			Terry model and display the mo	ki nitinga in Ele-acalia. You ca
Total Arrodeb:	82. Total #vetes: 672,236. Last updates							
NEW: View I	eaderboard for different categories (e.g., c	oding, long user	(sey)?					
Code to recreat	te leaderboard tables and plots in this occ	stepic Vau can o	ortiliuteyo	er vede 🔿 at <u>chur i v</u>				
			Overall Q	ustians				
			fmodel	II: 82 (108%) PV66	HE 672,235 (200%)			
Bank +	• Rodel .	+ Arena I	- al	2 955 CT	A 🗢 Votes 🖌	Organization +	License +	Knowledge Cutoff
						IAneqO		
					56181	Anthropic	Proprietary	2025/8
			1254 1250 1289 1283					
					50923	OperAI	Proprietary	2025/12
					62056	Anthropic	Proprietary	2023/8
					42925	OpenAI	Proprietary	

HumanEval: Hand-Written Evaluation Set
This is an evaluation harness for the HumanEval problem solving dataset described in Language Models Trained on Code ⁴ .

RT-1: 3,000 Trials

RT-2: 6,000 Trials

RT-X: 3,600 Trials

Measuring Axes of Generalization

Can we systematically measure policy generalization?

Table (x3) Back

Background (x3)

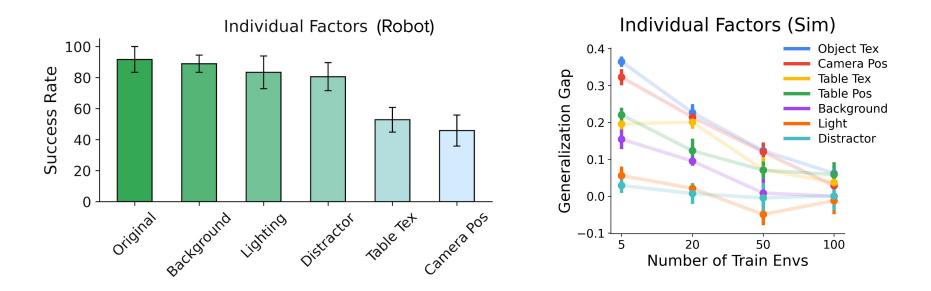
Distractors (x3)

Lighting (x2)

Camera Pose (x3)

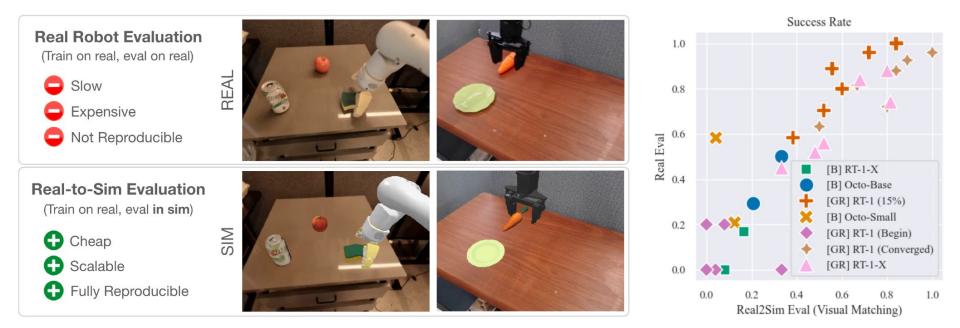
Evaluation Metrics: success rate, generalization gap (train - test success rate)

Impact of Individual Factors



"Easier" factors: background, lighting, distractor "Harder" factors: table position, table texture, camera position, object texture

Real-to-Sim Evaluation for Real-world Robot Policies



Key Insight: A simulation "good enough" for useful <u>evaluation</u> signal may be much easier to build than a full digital clone for <u>training</u>

World Models for Evaluation

PRISM-1

UniSim

Genie

[4] PRISM-1, Wayve, 2024

[5] UniSim: Learning Interactive Real-World Simulators, Yang et al., 2024

[6] Genie: Generative Interactive Environments, Bruce et al., 2024

World Models for Evaluation

PRISM-1

UniSim

Real world evaluations will always be the gold standard. Scaled evaluations will be solved by unit economics and products.

[4] PRISM-1, Wayve, 2024

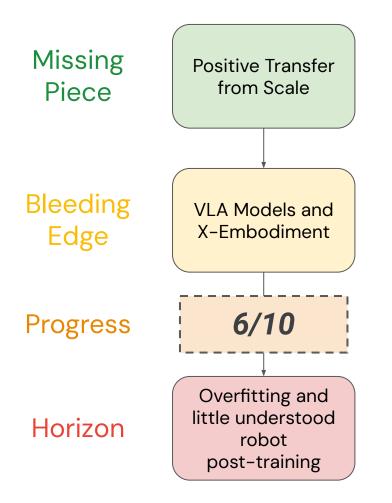
[5] UniSim: Learning Interactive Real-World Simulators, Yang et al., 2024 [6] Genie: Generative Interactive Environments, Bruce et al., 2024

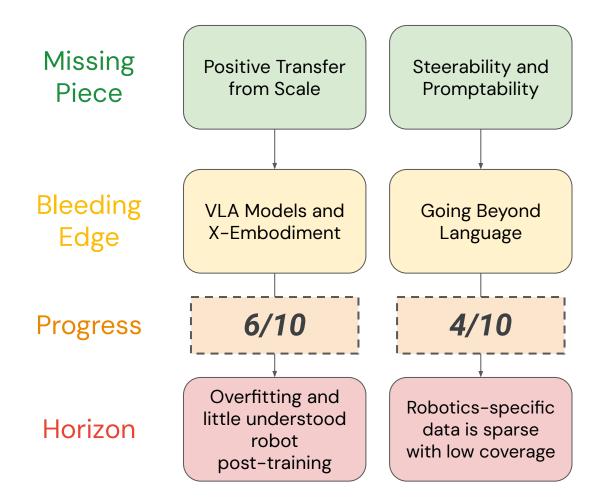
Genie

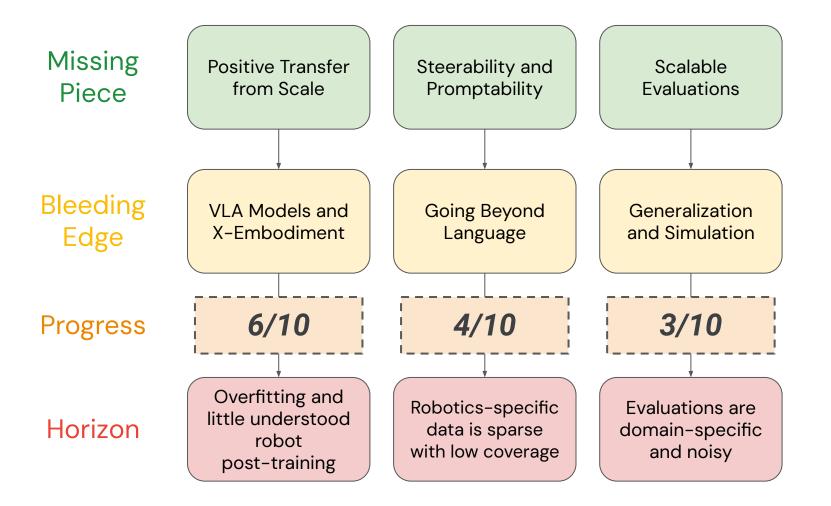
Agenda

- O1 Why Robot Foundation Models?
- **O2** Piece #1: Positive Transfer from Scaling
- **03** Piece #2: Steerability
- O4 Piece #3: Scalable Evaluation

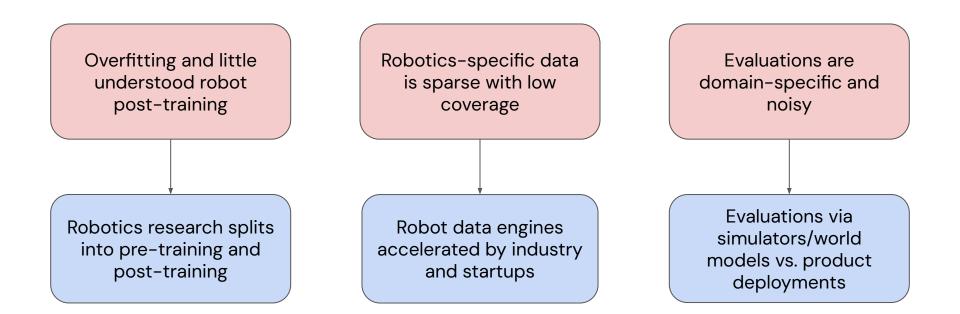
05 Horizons







Predictions



Thank you! tedxiao@google.com

Google DeepMind